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ABSTRACT 

In This paper we consider elliptic and hyperbolic problems in unbounded 
regions. These problems, when one wants to solve them numerically, have the 
difficulty of prescribing boundary conditions at infinity. Computationally one needs a 
finite region in which to solve these problems. The corresponding conditions at 
infinity imposed on the finite distance boundaries should dictate the boundary condi- 
tions at infinity and be accurate with respect to the interior numerical scheme. Such 
boundary conditions are commonly referred to as absorbing boundary conditions. This 
paper presents a survey and cover our own treatment on these boundary conditions 
for wave-like equations 
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Report on Task 1 

The enclosed paper is a result of Task l ( i ) .  This paper was presented at a short course entitled 
"Numerical Methods for Partial Differential Equations" which was held at the University of Tennessee 
Space Institute, Tullahoma, between March 18th and 22nd. This will also appear in a book with the 
same title to be published by Pitman next year. 

Remaining part of Task 1 is proceeding smoothly and expected to be completed in time. 



ABSORBING BOUNDARY CONDITIONS 
FOR EXTERIOR PROBLEMS 

by 

S. I. IIaritiaran" 

1. It?t__ro,uc t ion 

Mariy rorriiulations arising from physical tiaturc yield problems in tin- 

bouriclecl regions. Mat hernatical forrtiulatiotis of such problems yield govern- 
ing partial (liffereritial equations in  or near a given tlortiain in such a fashion 
that,: i )  ttic equations may be linear but  w i t h  non-coristant coefficients, or 
1 1 )  the tquatiotis may be notilinear, bu t  at large distances essentially be- 
have linearly and wi th  coristant coefficients. L his note presents a survey 
of ttie trc:at.rnerit of such prot)ierris, when the  desirctl soltitioris are govertietl 
by elliplic o r  tiyl)ert)olic partial differential equations. These problems arc 
called exterior problems arid commonly arise in the f ieldi of aerodynarriics. 
nieteorology, electromagnetic scattering, arid at rtiosp heric acoustical W R V ~  

propagatiori. The rtiairi tlifliculties with these problerns are t tie houiidary 
conditioris that need to be prescribed at large distances from the region of 
intc:rcst. lisrially only a n  asymptotic behavior is known. Such conditions 
may I)() sufticierit to check the well-posedness of the prohlem, however. i f  
one watits to compute the solutions of these prohlerris niirtierically, infinite 
distances need to be truricated to finite distances. 1 tie t>oundary conditions 
irriposetl on ttiese finite clistaricc. boundaries should dictate the behavior a t .  
infinity i l t i t l  be accurate wit  ti t t i e  iritcrior nurrierical scheme. FiirtSherniow.; 
the stiortcr ttie tlistanccs. t tie tiiwre efficicwt ttie solutioris in t e r m  of coiii- 

prltiltioti tirrie requircvi. I tiis considerat,ion is the essential neeti in  several 
prot)ltvris. (lq)eti(litig oti t , h c i  prohiern anti t tie kiri(l  of Cotlipliter that is used. 
Typical o f  s u c h  cilscs i l ro rriost threc tlirriensional prot'lcms. The iti tcnt ion 
tiere is to prescrit soin? available tectitiicjiies t.0 ovfircoiiic this (1ifficult.y. in -  
c I ud i ri g tip p I ica t io t i t o  40 i n  t' r r i o t l e l  pro b lerti s. 

.. 
r ,  

,, 

r ,  

.-- Lo begin, let ~ i s  illustrate some concepts using simple one dimensional 



model problems. 
equations a r e  reduced wave equations. 

First, let us consider a n  elliptic problem where the  field 

Consider a s lab of thickness L with a varying iridex of refraction n.(x). 
. Left of this slab, let the  rnedia be homogeneous with index of refraction I 

and  right of ttie slab (z > 15) let ttie index of refraction be no (> l ) ,  which 
is a coristarit. Siicti problerris are  cornrnon in optics a s  well a s  geophysical 
waves. This  sit.uat,ion i s  illrrst,raktl in  Figure 6.1 T h e  goverriirig equations 
a r e  as follows: 

INCIDENT WNE 

REFLECT ED 

WAVE 
- 

ut’+ k2ncx?u = o 

0 L 

ARTIFICIAL BOUNDARY 

TRANSMITTED WAVE 

X L’ - 

Figure 1 O I I ( ~  clirticrisional rrioticl 

Theri (1 .1)  tieetls to tw solved it i  [0 ,  LI] , (L’ > L )  say with boundary coticii- 
tioris 

11,/1(0) = g (1 .2 )  

&u( L’) = 0. ( 1.3) 

ti? u’ qmtirious o n  interfaces (1:q 

where L 3 1  arid B2 a r e  boundary operators  a n d  g a r e  given are  t o  be  choseti 
according t o  the  physics of ttw prohletti. For example. if  there  is a rinit 
‘> 



ampli tude wave traveling from -m incident 0 1 1  t he  slab,  then  for x < 0 the  
solution may be  writ ten as 

u ( z )  = elkx + R ( k ) e  - l k X  (1.5) 

where R ( k )  is the rellecliori coefkient and measures the part of the  wave 
which is reflectcd from the  boundary x = 0. Eliminating R(k) from (1.5) 
yields 

u ' (0 )  + i k u ( 0 )  = 'Lik (1.6) 

wtiich i s  callcd ail inllow <:oridition. T h u s  in view o f  (1.2) B I  G d / d x  + 
ik  arid 9 = 2ik .  Now we can clo a similar calcrilatiori t o  obtain a boundary 
coridiliori a t  I,'. For L > L all the waves trarisrnit a n d  do riot reflect back a s  

there a re  no other  boundaries for x > L. 111 this region the  solution niay h e  
writ ten as 

(1.7) t k n o x  ~ ( x )  = T ( k ) e  

where T (  k )  is tho tratisriiission coefficient which measures t h e  t ransmi t ted  
par t  of the  wave. F(:litniriatitig T ( k )  in (1 .7)  we obtain 

l lgain cottiparing with (1.3) we see t h a t  the  opera tor  B2 is 

T h e  boundary condition (1.8) is t he  desired absorbing tminda ry  condit,iori 
for this problem, which is exact. 

We note tha t  this condition could have been applieci w a c t l y  a t  s = I,. 
anti this. as WP will see. cloes not always hold in higtier'ciiriiensions. The re  is 
another tccliriic*id clif1icrilty i n  this type o f  problem. Orie can firid t ha t  tvcn 

t tie irtterior resotiarct values  for which the  continuous problem does not have 
solutions. CVhen one deals with higher dirnerisional problems it is not easy 
t o  (:alculate siicti frequencies when one  has a general shaped regiori w h c r v  
the  solutiori is sought. 

a 2  i f  n, ( L )  miistatit t l i c w  is a countable set of wave numbers {krL } c a l l t d  



Figure 2 One dimensional niodel 

ARTIFICIAL BOUNDARY 

co2 "tt = u x x  

TRANSMIT TED - WAVE 

X - L' 

As a n  example of hyperbolic problems anti associated boundary condi- 
tions, let us consider again a one  dimensional model. In particular let us 
consider the  following problem (see figure 2): 

u, I L ~ ,  ut continuous on  s = L 

@ , t )  = s( t )  

Hu( L', t )  = 0 (L' > 1,). 

(1. LO) 

( 1 . 1 1 )  

(1 .12 )  

( 1 . 1 3 )  
r ,  I his problerti tells 11s tha t  the wave is propagating from a source at s = 0 
and the wnvc speed changes in 0 < z < L and  for x > L the  waves do not 
reilect, in this region. Lquatiot-i (t.1:3) dictates a no i-d'leetioii cotidition in 
this region arid t3 is an operator which is to be  determined t o  fit this physical 
nature.  For J: > L t he  outgoing wave solution can  be writ ten as 

I 7  

u ( x .  t )  = f 9 ( X  - c o t )  ( 1 . 1  I) 

CV I1 icli y ielc Is 
col ir  + Ut = 0 

Thus tlic absorbing cotidition to be  imposed a t  2 = L' is (1.15) and 

(1.16) 



We see from both one dimensional examples t h a t  t he  absorbing bound- 
ary conditions a re  exact arid easy t o  obtain.  T h e  difficulties arise in higher 
dimensions as we will see. Nevertheless the  first problem we described here 
serves as a rnoclel for inverse problerris t ha t  can  be investigated numerically 
t o  calculate n 2 ( x ) ,  if t he  no reflection condition Bzu = 0 is given. This  is 
described in Dritiri and  Ilariharan['1. 

T h e  approach takeri is as follows: In section two we describe a local 
borrridary condition procedure for exterior elliptic problems. I n  section three 
we describc a notilocal t)outidary condition for similar problems. I n  section 
four we clcwritw a new method t h a t  corribines the  previous two procedures 
but  ttiore accurate  than  either. Finally, in section five we describe the  tneth- 
ods known for t ime dependent problems arid describe their  use for a practical 
problem . 

2. Local- l 3 g l r d ~ r y  Conditions Procedure 

We pointed out  in the  last section tha t  the  absorbing boundary condi- 
tions a re  exact in one dimension a n d  do not  hold in higher dimensions. \Ve 
warit t o  itivcstigate this statement a little further a n d  provide a t rea tment  for 
this, t ha t  of Bayliss, Grunzburger and  Turkel.[2! For illustrative purposes let 
us consider the  following problem tha t  commonly arises in two dimensional 
acouslic scalteririg. 

Let (1  I)e a simply connected, bounded domain with boundary r arid its 
exterior R +. 'rticri the  problenl is (see figure 3): 

A U  + IC'IL = o in R (2 .1 )  

(2 .2)  

I I  satisfies a radiation condition (2 .3)  

Brie[ly this prot)lern has a physical meaning that .  there  is a wave inciderit on  
12 whose t)orrndary r is a perfect reflector a n d  the  reflected waves all decay a t  
infinity. IL measures the  scattered par t  of the  wave a n d  9 is t he  contribution 
frorn the  incident wave. Regardless of the  boundarj-  condition ori r, the  issue 
here is ttic radiatiori conc!itien. Note that  t he  r a d i a t i m  condition is another  



/ 
INCIDENT WAVE 

RADIATED WAVE 

A u  +k2u = O  

Figure 3 Two di rricwsiorial scat teririg problem 

name for the  absorbing condition. It is known tha t  a t  large distances the  
solution of (2.1) behaves like 

(2.1) 
The first part  o f  this solution dictates outgoing waves and  the  second part  
dictatos incorriirig waves, which cat1 easily be seen from the signs e -  . 'I'tiris 
iri ortier [or t,tic! r;ttliatioti condition t o  be satisfied we rtiust pick only the  first 
part .  

- t k r  

1.e. 

Cotrip;wirig this to the one dinierisional case in ( l . i ) ,  shows tha t  irist,ead of 
a single transttiission coefficient we have marly coefficients a,, i = 0, 1.2. ... . 
Thus  the one dimensional way of elirtiiriatirig the  trarisniission coeificierit 
does not esactly work in this situation. This shows the difficulty iri higher 
dimensions. [lowever, i f  w e  settle for loss of accuracy, in particular eliminat- 
ing aO(0) we have 

(2.6) 

( 2 . i )  



or simply T--roo Lirti r (u. - iku) = 0 which is Sornmerfeld’s radiation coriditiori 
in two ditnensions. 

Taking a closer look a t  the right harid side of (2.6), in  particular, the 
. first expression, we see that it is nothing more than -u /2r .  Thus we have 

2r 

Corriparirig (2.7) arid (2.8) shows the error introduced in t’he boundary con- 
dition at, large distances is retluced by a factor of 1 / r .  ‘rhis was first studied 
i n  wriri(-(*tiori witti nritrierical irnplemeritatioti for time dependent problenis 
by Lhyliss arid Turkel131 and also by Engquist and Majda[71. For time har- 
monic cases wi th  time dependence of t h e  form e - c k t ,  both of their boundary 
Conditions reduce to the form (2.8). Uayliss, Gunzburger and Turkel121 gen- 
eralized t hcse conditions. ‘rhcy tlclined t he boundary operator on t he left 
side of (2 .8)  by 

W l i c w  (2 .8)  is explicitly writteri it has the forrri 

(2.9) 

(2 .10)  

‘They ot)scrved that riow the second coefficient u l ( 0 )  can also be eliminated. 
I f  one does tliat by setting u = D I U  it  is readily verified that 

or 

This process can be repeated ‘to generalize 

) n,,,u = o ( t / r  2mf t/2 (2 .  I ? )  



where 
m 

r 
j = l  

(2.13) 

Thus in  order to implenient this approach the problem can be considered in 
a truncated region (figure (4))  as FoIIows: . 

Seek w such that 

(2 .14)  

(2.15) 

(2.16) 

Figure 4 Computatiotial tiorriain 

b ' l i c w  I', is a circle wticrc the approxirriate boiiridary conditions are 
to be imposed. 

fri i i ie rcgioti  it^ orie cilti  ti^ ti finite element fDrniii l i i t i i j i i  ijf the pi.cj!i!eiii 

similar to the one used in  the next section to seek the solution. But there 
are some difliculties. 

First, the goverrlirig equation is a second order diffwent iai equation. 
Even the set-orid order boriridary cotidition irivolves second order derivatives 
in the radial direction. And all the higher order conditioris (2.13) have higher 
order radial operators. I his can be overcome by appealing to the differential 
equatiori itself. Ileurititig the equation in cylindrical coordinates 

r 7  

8 



Frotn (2.17) we see that second ortier radial operators can be translated into 
single first order radial derivatives plus derivatives in the tangential direction. 

' h e  second diliiculty is ttic following. In comparing (2.1) - (2.3) and 
(2.14) - (2.16) we see that thorc is an a priori error introduced (irrespective 
of the numcric;il schetrie ~ised) of the order O( l/R"m+L'2), where R is the 
distance of 1'- from the origin. 'I'his of course depends on the order of the 
operator too. The qiiestiori is what can we say about 11 u - w 1 1  in a suitable 
norm. 'rtic arisww is not available in two dimensions. tiowever, Dayliss, 
Curixhrger arid 't'urkel were able to prove for corrcsponding operators El,, 
in ttiree ditritwsioris for rrb = 1 and rn = 2 the following t#heoretn. Let 
w = u - w ,  ttien - 

(2.18) 

where C dcxpends ori k arid roo and the norm is defincd or1 the surface as 

This thcorcrri tclls that, t tit! wror oti the artificial boundary in that given norm 
is inversely proportional to l/r"'+' and this error remains the same in the 
interior boundary too. The key point here is that ttiis bound is dominated hy 
C which ticperids or1 ttie wavc ritimbcr k .  For three ditnensiotis as k --f 0 this 
estimate is still valid. Ifowever, in  two dimensions, even though it is possible 
to get such ari cstitiiate as ttic wave number becomes smaller, this constarit 
can grow larger, Ln fact, i t i  two tiittierisioris there is a logarithmic brarich 
point as k - 0 arid ttie constant C can grow very large. For this reason, tor 
low frequency cases the problem must be examined very carefully. Such a 
treatrrierit is tectitiical arid it  is available in tfaritiaran arid ,LlacCamy.121. 

These tlilficiiltics are pertinent t o  the retliiced wave equations. Ifowever. 
other strorigly cdliptic cases ciiti be handled wittiout tliliiculties. For exaniplc 
if we corisidcr 1,aplace's equation A u  = 0, theri ttie solution at itifinity either 
tias to he bounded or behaves logarithmically with a given behavior. To 
apply the above process let us cotisicier the following problem: 

= 0 in R +  



Solutions for this problctn can be written as 

00 

(2.20) 

(2.21) 

(2.22) 
n=O 

This can tw used to o h i n  boundary conditions on the artificial bouridary 
Set 1-j = ?L - logr - ao. Elimitiating a l  we see that, 

Sirriilarl y eli niiriat ing a2 we obtain 

(2.23) 

(2 .24)  

This process can be repeated to obtain higher order conditions. The constarit 
a0 can be obtained by averaging the solution on rm. I n  section 4 we provide 
an alterriative treatment to resolve the dificulties. In fact we irnplenicrited 
the conditions (2.23) and (2.24) along wi th  ours to compare the efficiency of 
our proccdiire. 

r i  L his proceclrire is a little more difficult to handle than the previous 
uIlt=. Iliii, i t  does not introdi;ce an a przcrz error dr?e to placing the   ti- 
k i a l  t)oiitirlary at finite distances. There are two different versions of this 
procediirc. 'The first one originated in the work of Fix and .IlarinlQl which 
was doric for sitirations of' wave guides arid was made general in two tlinien- 
sions by XIacCnrny and h l a r i r ~ ~ ~ ~ ~  .. The second versiori is tirie t o  .Jotirison arid 
Xctlelccl "I, w tiicti was done irideperidently but  has sirriilarities in the  ap- 
proach. Extension to three clinierisions was done by Aziz arid Kellogg~ ". All 
these procedures are done i i i  view of irnplementing finite element niet hods. 
As a result, a reasonable arriolitit of analysis is available for this method. It is 
alrriost itripossitAe to s~i~i i rn~rize all of i t  here. kVe choose the method of %lac- 
Carny and hlitrin arid :lescribv how t tie tion!ocal condition< H F ~  treated. The 

I O  

. .  
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/ u \ 
Figure 6 Two dirriensiorial interface problem 

k2U = O  

attractive ftvitirre of this method is that it is appropriate to interface prob- 
leriis ari;~logous to the OW diniensional model that we described in section 
one. Let us present the ttiodol problem in two dirriensions. Again this is a 
scattering type of a problerri, brit this t h e  the scatterer is a n  inhomogeneous 
penot rable t>ocly. The problem is as follows: 

Au + k L n 2 ( g ) u  = 1 in fI (3. I )  

AIL + k 2 u  = o in {I+ (3.2) 

- u = u +  on r 
du-  du+ 
i3n an 

-on I‘ -- = 

II - I I ,  satisfies Sornrrierfeld’s radiation at infinity. (3.5) 
Eqriatiotis (3.1) and (3.2) say that  the index of refraction of the media in 12 is 
n 2 ( x ) , x  = ( x ,  g )  anti outside is just a constant. In (3.5) u t ( x )  is a prescribed 
iricitlctit ficiltl which satisfies (;3.2). (3.3) and (3:t) are continuity conditions 
of the solritiori uti L’. Iri rii;my applications they itlay not be continuous, but 
rattior riiiky tiiivc juriips. 1 Iicse jrirtips can tie treated without rnuch difficrilty. 
To tlcscritw ttic! procedure let l is cxtcnd n2(x) in R 2  so that 

r .  

arid exterid f in a similar rriaririer, so that 



So tha t  the  goverriirig eqiratioris will be 

A u t  k2pu = g in R2. (3.6) . 
To do tirrrrierical calculations lot CIS t runca te  the  infinite region by a circle 
roo into a finite one  as depicted in Figure 6. Denote the  t runcated region 

‘ 

by OT* 

Figure 6 Cortiputatiorial doniairi 

A s tandard  way of handling this problem is to use variational methods. 
Suppose (I is a solution and  u is a n  arbi t rary tlifferentia1)le function in RT. 
If we rniiltiply (3.6) by v, integrate over RT arid use integration by parts we 

This variational forrn is the  basis of a numerical niettiod. But ,  in order  
to impiernent t, tiis nurrierically, one  shouid have eriougii iriforrriatiori about  
du/&L or1 roo. ‘rtlis in fact requires the  knowledge of the  solutiori exterior 
t o  roo in the  region &,. Recalling tha t  in this region u satisfies 

Au + k 2 u  = 0 

This  suggests t ha t  one may seek. ati integral representation of the  solu- 
tions. tn particular let 1.1s consider 

12 



where GI, is the free space Green's function and has the form 

(3.9) 

. The rcprcsciitatiori (3.8) is ktiown as the sirnple layer representation, which 
satisfies Ihe Iklrtitioltz eyiiat,ioii arid satisfies ttie radiation conditiori a t  in- 
finity. ' r t i t s e  two facts are easily verified by applying the Helmholtz operator 
to (3.8) and by realizirig ttie asymptotic behavior of (3.9) for large values of 
I x 1 which yields the form (2.5).  In order to calculate the riornial deriva- 
tive of u ori l',, (3.8) together with the standard jump relation in potential 
theory yields 

Tt i r is  illl,/i)rL ( : i k l i  tie calciilateci once a is known. Orie can use (3.8) to obtain 
a singiiliir iiitcgral equation of the first kind to deterrnine cs when x is on 
roo. 

= 1L - = km a(Y)~k(X,Y)dsy, x E r, (3.1 I )  

Let us dcriote this equation in an operator form 

(3 .12)  

Then a cikti be formally inverted to obtain its value of the form 

Brit ttiore is i i  t,oclitiical difficrilty here. Gk * exists provided - I C 2  is not ari 
eigenvalue of the operator A with zero Dirictilet contlitiQn on roo. This result 
is familiar in  the diffraction theory arid it is analogous to the statement that 
we rnadc I'or t tic corrcspondirig orie dimensional probletn. That is to say. 
such valuc1s of k will be the irittrior resonant values of ( 1 ~ .  But there is 
a way to troat this probleni. Urseil[i81 proposed to seek solutions in ttie 
exterior iiot only by a simple Ihycr operator as in (3.8), but combined with 
a double IiLYcBr representation. This slightly complicates the explanation of 
the present tricttiod, brit rit.vertheless, can be done. For the moment we stiall 

1 :: 



assume IC is not a resonant value so that (3.13) holds. Then (3.LO) takes the 
form (for x E Pm): 

The right 
ttiat ( 3 . I , 1  

t m d  side of (3.14) is another integral operator acting on u, so 
can t)e written (for x E I?,) as: 

(3.15) 

rrtius, tlic norrrial derivative of IL is a functional of u on roo. A closer look 
at (3.14), sliows that to calculat,e &/an at each poitit on I?,, we need the 
knowledge of 11 on the entire boundary roo. Thus the boundary condition is 
notilocal. I'roptrties of the operator T k  are discussed in detail in reference["/. 
[ti piirtktilrir i t  is a boiindctl litionr operator. 

Ilettirriitig to the variational formulation, (3.7) together with (3.15) otie 
tias 

V u .  V u  + I C 2  p u  + 1;. 1: T&L) = 
1) 

(3.16) 

To provide a brief riutnerical impletrieritatioti of (3.18) we seek approximate 
soiutiotis uh such that 

C Z ( I L h ,  U h )  = F ( V h )  (3. t i )  

for a11 zrh E s ~ .  
wtierc uh i i t i t l  arc it1 a finite ciitrierisional subspace S h  o f  an infinite cii- 
tnensional sf)iict' S w t i c w  u is m i g h t .  Theti ( ;$ . t i )  is tnade equivalent to a 
matrix pi*o l ) l cv i i  hy sclcctirig a hasis { p l l  p L ,  e p .v}  for S h .  This says IL 

cat1 be aI)l)r.o,~iiiial(.cl by 

which satislies 

1.t 

(3.18) 



Then  (3.19) is the  matrix problcrri 

k q = f  (3.20) 

. where q = ( q i , q z , *  - 6 - , Q , v ) ~  is the vector of weights in (3.20) a n d  f is the  
source term. 

kltJ = ( ~ ( ~ j , p r )  = - 1, V ~ J  * vP* + k2 1; /&',pi -k I ,  ' P t T k ( ' P j )  
T s u o  

(3.2 1 )  
We cari tiow describe how the  rionlocal boundary condition (3.15) is used. 
We see f ron i  ( X 2 t )  t ha t  calculating (3.15) is equivalent t o  computing t h e  
i n t eg ra  I s 

(3.22) 

for the basis furictions p [ , ' p z , '  - . p ~  of the  approximation space S h .  This  
cotnputntiori is carried out  in a straightforward manner  using (3.12) arid 
(3.1.1). First solve for oi,i = 1, e + N. 

a n d  cortipritcl Tk(y ) , ) (x )  (for x E I'm) frorn 

(3.23) 

(3.23) 

There  arc effective procedures t o  itriplement (3 .23)  a n d  (3.24) in two 
diniensioris which can tw foritid i r i  MacCamy arid Xlarin["I, a n d  also in 
corijrinctiori with ati integral equation t reatment  t o  this prot)leni. when n 2 ( x )  
is a cotlstittit. roiiritl ir i  ~ ~ a r i t i a r a n  i m c I  MacCamy[ '2 ' .  

Some final rernarks a re  riectltd. CC'e assumed ti arid &/an are continu- 
ous  ori the boriridary I'. If they have j u m p  discontinuities of the  form 



T h e  variational form stiould be modified. These modifications can  be found 
in r e f e r c r ~ e [ * ~ 1  arid in  I3ielak,  MacCarny arid !~ icChee [~I  together with nu- 
merical i rn plcrncri t a t  ion. 

ln this section we provide a description of a new method due to Canuta, 
I-iaritiarari arid 1,rrst mari[51. [+or11 the  discussions of local boundary contiit ions 
procedure!, we saw tha t  errors introduced in computat ions are twofold. T h e  
tirst oric' is the  error which varies according t o  t h e  farfield distance a n d  the  
order of the  horrnclary conditiori used. T h e  second one  is d u e  t o  implenienta- 
tion of finite olcrrient method. In ttie nonlocal boundary condition procedure 
we see tha t  error is essentially only d u e  t o  the  finite element method a n d  
ttie solution of t,he integral t!qiiatiori o n  t h e  bouridary rm. No other  error  is 
introtlucctl. 1 tic local coriditioris can  be  irriproved by either increasing ttie 
ciistaricc of t t i e  artificial hoiiridary o r  increasing the  orticr of the  opera tor  
H,, so tha t  the  clortiinatirig error will b e  essentially d u e  to the  finite element 
irriplerrieritatiori. Error estimates, in such procedures a re  usually a t  t h e  best 
of O ( h s 2 )  for this type of protiletti. r\ question which then can  be  asked is can  
we iniprovc ttic accuracy of the solutions by a method which does not have 
an  n pr ior i  error due  t o  placing the  artificial boundary a n d  a t  t he  s a m e  t ime 
achieve error  in computat ion O(h") , where M is t he  number of elements 
used. It is possible, i f  one uses spectral  methods,  arid a brief theoretical 
discussiori of obtaining such accuracy is found in Lust mian[ ''1 for simple one 
dirtiensiotial problems. The method we will describe here does not have any 
ttieoretical error estimates yet. At this point we only have numerical evi- 
dences. Theoretical error estimates a r e  available oniy in one  dimension, a n d  
extcnsiori t o  tiighcr ditriensioris is still much in need of work. T h e  proce- 
dure  wc going t o  dcscribe here works for a general sccond order  elliptic 
problcwi. exterior t o  a given dornain in two dimensions. T h e  s t ruc ture  is as 
follows: 

,. 

L u =  f i n n +  (-1.1) 

= Otl r ('4.2) 



operator a t  00. For illustrative purposes and t o  appraise  numerical results 
let us consider ttie problem given through (2.19) - (2.21),  which we repeat 
here. 

A ~ L  = O  in O+ 

u = g  o n r  

Again t t i c  goal here is t w a t  tlic coriditiori (4.6) nurrierically. Solution in the  
farficld ttiay he sought through separation of variables of the  form 

(4 .7)  

where ( r ,  p )  are ttie polar coordinates in t h e  plane. Note tha t  t he  right hand  
side of (.t.8) satisfies t he  radiation coriditiori (.t.tj) a t  infinity. 'rho coetficitwts 
Uk a r e  urikriown. The approach here consists of expressing each coefficietit 
ak as it furictional of u, ra ther  than eliminating a finite number of them rising 
tliffcrential operations described in section two. From (4.7) we see that, for 
any r > O , u k / r l k l  is ttie k-th Fourier coeflicient of the  periodic futictiori o f  
p I-+ u ( r , p ) .  Thus we cari invert t he  coefficient t o  obta in  

If we diffcrcntiiite (4 .7)  with respect to r 

(4.8) 

arid use (4.8), we obtairi aii  integi..~-diff~rential relation on  circle of radius r .  
as follows: 

o r  



where K o u is ttie convolution of u with singular kernel 

K ( q )  = kcos kq 
.?I- 

(4.12) 

Again we consider a truricated region RT with a n  artificial boundary 
roo where tho condition cxmesporitling t o  tha t  of (4. I t )  will be imposed. 
Note a t  this point tha t  (4.11) is sitnilar to  ttie condition (3.15) except it 
is itnposcvl oil i i  circle o f  radiris r = R,. It is not a necessary restriction 
tha t  I’, stloillti l)c a circle. Lliit the  restriction guarantees accuracy, if the  
approximate solution is i i  trigonometric polynomial oti roo, which is the  case 
if a spectral Foiirier riiettiod is useti in the angular clirection. Suppose the 
approxiriiiite solution on I’, to be u N ,  which is a trigotiorrietric polynomial 
of degree :V : 

* 
(4 .14)  

Ikl<N 

T h e  asterisk in the suniniatiori indicates periodicity in the  p direction (i.e., 
ti:;( R,) = ii”( R,)). ‘I’lieti (4.16) says tha t  the integral operator  K pro-  
duces a tiew polynomial of degree N, whose Fourier coefficients a r e  obtained 
froin tliosc of n N (  Roo, e )  by multiplication by the  modulus of the wave nuni- 
her I k I . If u e V  is known ori I’5o through its values u N ( R m , p 3 )  a t  equally 
spaccxtl points j r / i Y ,  j = 0. 1 . .  ,2 iV - 1 , then K o u N  can  be  coniputed 
a t  the siiiiit’ riotlcs exactly arid vfliciently, first, by Fourier transformirig the 
valries of 11.’ t o  get its coofhcients. then multiplying by the  modulus of the 
wave nrirtil)crs and  finally by Foriricr transforming back t o  get the point 
values o f  /< o udv. ‘l’liis takes order o f  ~Vlog,it’ operations if one uses fast 
Fourier trarisfornis, which iire always used in  this type of calculations. Thus  
the spectral soliitiori is rtyiiired t o  satisfy the radiation condition 

I 
= [ I  - K otl r, 

&a 
(4 .15 )  

Unlike ttic family of coriditionb described in section 2, this is precisely the 
same bouritlary condition satisfied by ttie exact solution except for the trun- 
cation error which conies frotit iisirig a finite !!umber of modes. No e ther  error 
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PHYSICAL DOMAIN COMPUTATIONAL DOMAIN 
(r,e> ( s , a  

Figure 7 Mrtppirig of physical domain t o  corriputational domain 

is introtliiccd a n d  this is why w e  call this form the infinite order radiation 
cotirti tioti. 

'L'tic actiial ittipletrietitatiori i r i  a simplified forrti is as follows: 

Siippose t,tie boundary r' is polar represttitable as r = R(0) .  We use 
Cliebyslicv polynomial approxiniation in the radial direction a n d  Fourier tie- 
cotripositiori iri the angular direction. For this we need to  make a coordinate 
transform as clopicted in figure 7.  In particular ttie transformation is 

So tha t  

(4.17) 

So tha t  the side ( I )  in ttie trarisfornied plane will correspond t o  the  boundary 
C' arid side (2)  will be  the tmutitlary roo. Such a trarisforrriation can  be done  
in several ways. In particulnr.'the following stretched one is very effective 

(4. !8) 

i9 



So tha t  a t  3 = - 1 , r ( -  I ,  0 )  = R(Q) .  Demanding r (  I ,  0 )  = /loo, we determine 
the  stretchirig parameter a(0) as 

(4.19) 

This transfortnation in trirri changes t h e  Laplace equation into the  €orm 

wticre a,b,c arid t l  are  functions of s a n d  0 obtained from chain rule. Seek 
approxirtiatc soliitioris of ttie forrri 

(4 .2 1) 

wticrc is ttic rrith Chebyshev polynomial of the  first kind, defined by 

 cos o )  = cos (4.22) 

arid uiv is tlcterriiiried by VL; at the  (Ad + 1) x 2N Ctiebystiev-Fourier nodes 

i = 0, - e iL1 
j = 0, ....21v- 1 

At i = .\I ttic giveri Dirictilet condition should be imposed. At i = 0,i3u/ds 
obtaincci from i l u / i l r  should t)e iiptlated. Placing the  inhomogeneous terms 
ai.isitig Irorri tlie boundary eoiiditiotis in a forcing teriii $, let iis rewrite t h e  
firial spectral operator  as 

.V 
( L s P  - s) (si loJ) = 0. (4.24) 

'L'ho rtiatrix forrncxl hy [ISpu.' is large arid docs riot have sparse  striic- 
tures. 'I'hus iri ortlcr to solve (4.24),  an iterative procedure is desirable. CVe 
outline orily ttic brief idca of implerrienting this procedure. Dropping the  
superscript N in (.L.'L,L) ttie rrie'ttiod is as follows: 

(4 .25)  



wtiere a n  is choscn so that the t, norm of the residual 

rni-1 = f - LSpun 

is rninirririrn. ‘Hiis gives 

(4.26) 

(4.27) 

wtiere ( , ) clcriotes ari t z  iririer product. 

A s  II sartiplc coniparisori we can generate a situation where the exact 

(4.28) 

For ttic gcorrietry of a circle ( r  = R ( 0 )  = 1) and for a 33 x 32 grid, t‘2 

errors itre listctl for diI€’erent valrics of Roo. Solutions are compared against 
lhyliss, (:utixt)rirgcr arid ‘L’rirktil’s procedure (UG‘F) with their first order 
(FO) atid secorid order (SO) boundary conditions given in section two (Equa- 
tioris 2.23).  IO C l I L  cleriotes the infinite order radiation condition of the  
presetit tticttiod. (Catirrto, tlariliaran and Lustrnari). 

solritiori is 
U($, y) = log ( ( 5  - .q2 + 9 7  

&a 170 BCT SO BGT IO C H L  

1.2 .I6 x .031 x .00037 x LOp2 

3 .15 x .025 x . O 1  x lo-:3 

5 : I 4  x .16 x 10-4 .1.4 x 

TABLE 1 

We SN f‘rorn this table t,tiat ’ i n  a11 cases the infinite order radiation 
coriditiori is sripcrior, especially ivlictri t tie artificial horiridary is tiear ttie body, 
wtiich is desired anyway. :\s I(, iticreases the first order and second order 
conditions becorne better arid coriiparable to the infinite order condition. 
This is txcause the grid size is lixed. If ttie grid size is increased. the infinite 
order condition will improve. Further illustrations can again be found in 
refewricc[’I . 
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Note further that this procedure can be easily extended to other types of 
prot>lems. l r w e  corisider tlic IIeltntioltz equation Au+k2u = 0 with radiation 
conditioti a t  iiiliriity we cmi write the outgoing solutions as follows: 

n-0 

where Hi1) are the EIatikcl functions o f  the first kind and order n. 

If wo lake the radial tlcrivative of (4.30) we have 

I .  00 
d 11 __ = 
dr 

a,k Hi')' ( k r )  ezne 

Again we note that a n / / i i ) ( k r )  is the tith 
can be irivcrtcd to give 

Yubstitutioti of this in ( , [ . 3 t )  gives 

or 

Fourier coetficien t 

u(r ,  p) e-lnPdp 

(4.30) 

(4.3 1) 

of ~ ( r ,  -), which 

(4.32) 

(4.33) 

'Hiis is sitliiliir to wtirit we tiatl in  equation (4.11) except t h a t  a finite number 
of valries of II,!') rind its tlcrivativcs must be calculated. To do this there are 
well kriowti wcurrence relatiotis atid numerical evaluations available in the 
li terat II re. 

5. I3ourictary Coridi tkKis for 'l'inic Dependent Problems 

This tias t)ec!ri the rnost ditktilt problem to handle numerically. It is 
still an open question if a tionlocal condition that is suitable for numerical 
cdciilations car1 be obtaincvl. Cl'o saw i n  sectinn 1 that it is relatively ea5y 
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t o  obtain an absorbing coridition for a simple wave equation in one  dimen- 
sion. We proceed in the same fashion to  obtain boundary conditions in two 
dimensions. This process results in ttie procedure introduced by Engquist 
and  Majd;t1719181. Ilefore we proceed t o  discuss the two dimensional case, note 

. that  in three clirnerisioris D'A1amt)ert's solution tioids. If we consider 

tlieti tjtio g m ( w l  solritiori Tor spli(:rically radiating and incorning waves can 
be writt,cri a s  

This rei)rosoritiitiori is wc4l kriowri a n d  may be found in Morse a n d  Feshbacki'6'. 
1he first piwt iritlicatcs outgoing waves. If one wants t o  impose a radiation 
condition, this part  rriay be used to represent the solution as  follows: 

r i  

(5.3) 
1 

u( r ,  t )  = - j ( r  - c t )  
r 

If we assi irne ttie sorind speed is normalized t o  one, then it is easy t o  check 
Trow ( 5 . 3 )  tha t  

I L ,  + u t  + - = 0 

wtiich is Iociil, tmth in spiice arid i r i  t ime, Out provides an exact description 
of sphcricdly radiating waves. 

U 

T 
(5.4) 

'rhus i r i  three diriivrisioris il iwliation conditiori similar t o  what  we dis- 
cussctl in soctioris 2 through 5 ,  in t he  tirrie domain wiii i)t.conie exact,  if one 
itiiposcs ( 5 .  I) at suflicic!ritly f a r  dist;rnces. In two as well as in three dinien- 
sioris i~rialogo~is to (5 .2)  orie warits a cyliridrically o r  spherically radiating 
waves at finite distances and that causes problems, as we will see a little 
latclr. 

Let us h g i n  t tie discussiori of two (Jirnensional wave equations. Consider 
a wave traveling from lcft iriciclerit on t he  boundary x = L( L > 0) without 
reflcctirig (see figtire 8) arid gokcrricd by 



Ut t = u x x  + u y  y 

L 

INCIDENT WAVE 

ARTIFICIAL BOUNDARY 

-. TRANSMITTED WAVE 

L X 

Figure 8 Two tlirncnsional triode1 

Let 11s pause for a rnotrierit arid consider the one dimensional case dis- 
cussed in wctioii 1. The eqriiltiori For Co = 1 is 

This ciiri tw written AS 

(5 .7)  

Ttic oporator LY = d/tl.c t d/at dictated the outgoing part of the wave 
given by ( I .  16). The operator i l /dx - i ) / d t  dictates the incoming part of the 
wave. To o t ~ a i ~ i  ii riori reflcctive condition we set Bu = 0. Let us examine 
if' it is possiblc t.o do an ariologous argurrient for two dimensions. Equation 
(5.5) can tw writ,tcn as 

I - - - ~  --- -- 

CVc liitvc! indicated by arrows as in (5.7) that in  (ri.8) the resulting opera- 
tors may Iinvt: a similar ttiwniiig. Unfortunately we have a square root of an 
operator. Illit this can bc easily explained using the theory of pseudo dilfer- 
twtirrl opcrators. For this piirpose let us take Fourier trarisforins of equations 
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(5.5) with rcspcct t o  t arid y arid call the  corresponding dual  variables r and  
c. This givw 

ci,, + (2  - s 2 ) O  = 0 (5.9) 

Eqriatioti (5.9) is ii reduced wiive equation in the z direction, whose solutions 
. may be written as 

,___ 

Arrows iti ( 5 .  L O )  indicate the waves rnovirig iri the  right a n d  left directions. 
111 ortlcr t o  impose ari oritgoirig solution we see tha t  we must choose 

(5.11) 

Now irivcrtirig the Fourier transform in (5. l l ) ,  w e  tiave 

Even though (5.12) gives a perfectly nonreflucting condition a t  r = L it 
is rather irripractical t o  impose cornpiitationally. However, in the pseudo- 
dilfertmtial operator tcririiriology idr2 - c 2  is nothing but  the  symbol of the  

pseudo tliifcwtitial operator J j;T - dT. d 2  Engquist a n d  Majda proceeded 
. 

witli l l i i s  giiitldirie tha t  ttie approximations of this symbol id- yield 
a I'zrrriily o f  iipproxiiriiitc t)ouii(lary conditions. In particular, approximations 
arorititl c = 0 (ttiis has the  physical rneaning of near normal incidence) gives 
the t>oirriclary cotitlitions tha t  w e  are seeking. For example, the zeroth order 
approxirriiitiori o f  i J r 2  - ( 2  is 

_--_I- 

(5.13) 

Substi tute (5 .13)  into (5 .1, l )  arid evaluate a t  x = L to  obtain 



The rigtit hand  side of (5 .15 )  is nothing bu t  t he  Fourier transform of -ut. 

'rhus (5.15) can  he  rewritten as 

(5.16) 

Which is the  o n e  climcnsiorial condition (1.15). Obv,msly this w 11 riot he 
accirratc criougti for high rcsolutiori t o  handle two tiiniensiorial effects. En- 
gquist & bliljclit procc(~(1od to obtain higher orcler approximations of the 
sytritioI ~ J T J  - ( 2 .   tie next ortlt:r Taylor approximation is 

__ - - -- - 

(5.17) 

Substitutiori of (5.17) i r i  (5.14) yields 

Differentiating (5.18) witti respect t o  t we see tha t  

11,t = lltt  - - 1 "Lyy.7 a t  x =  L 
2 

(5.19) 

lri this wily higtier order  1)oirridary conditions can  be  generated. O n e  warning 
should I)(? givcri tha t  thc higher orcler Taylor approxirriants of the  symbol 
i J . " q i  (lo riot always yield s t i h l e  boundary conditions. T h e  proof of 
this st;ltxtricrii is difficult and  w i l l  be found in  reference^^'. instead these 
authors proposccl I'adt.' approxiinatits a n d  found out  t h a t  they a r e  s tab le  
for all approxiuiatc boutit1;iry coritlitions. T h e  secorid 'Faylor approxirriation 
coiticitlcs witti t tic first I'ntlc' approxirriation and from physical reasoning 
both ttic tmititlnry coritlitions ( 5 .  LO) arid (5 .14)  a r e  stable.  

'l'ticre is aiiotticr iritleperidctit work d u e  to Ileyrioldst2"'. parallel to t tie 

work of l'hgquist arid hIajitJt1a which derives the  bouridary cotiditiori (5.19) 
as a special case, R.loreover, this work describes in detail on reducing edge 
rc4lcctioris. lteceritly, l<eysl'" proposed a new method again by decomposing 
t tic wave c~lrintiori  into iticotiii!!g aticl otttgoing components to obta in  a family 
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of boundary contlitioris. In this work, tie derived Engquist a n d  Majda’s as  
well as Itcyriolds’s conditions as special cases. 

Now s 11 p pose cy l i  rid rical ly r i d  ia t i ng boundary conditions are imposed. 
. Thcri it is rioccssnry to  charigc the equation (5.5) into cylindrical polar co- 

ortl i nates : 

(5.20) 

This has noriconstarit coc.flicicnts arid needs sufficient modification t o  apply 
the above tlieory. Again variat)le coefficient theory pseudo differential op- 
erators ciiii be used. It is difficult t o  summarize this procedure, however 
tticrc is i i  sirriilar approach to  that which we have given above. First Pade  
approxirriatioti o f  t tie resulting syml)ol yields the  boundary condition 

(5 .2 1) 

t o  tit! iriipowd iit sufficicrilrly large distance r .  

I t ,  is ititcwstirig t o  note that this condition can be obtained from separa- 
tioti of v;iriat)los arialogous to that of the spherically outgoing solution ( 5 . 3 ) .  
In this cii;s(: we do not have a simple forrti of D’Alertibert’s solution, rather 
it tias tlie form 

f ( t  - r )  u(  r ,  0 ,  t )  = __--- + .lo + . . . . .) 
Ji r 

13litriiriatirig czo(U)  iri (5.22) we see tha t  

(5 .22)  

Wc wo t81i;i1 I)ouritlary coticlitiori (5 .2  1) agrees witti the  physical one (5 .23) .  
Elirtiiriiitirig a l  ( O ) ,  u 2 ( 0 )  etc., Uayliss &: ‘lhrke1121 obtained a family o f  racli- 
atioti coriflitioris, wtiicti agree only witti (S.23)  of Engquist gi Majda. O the r  
higher ortlcr coritlitions differ frotri each other.  Itigher order conditions are 
very appe;iliiig, brit difiicult to iniplertietit. [ t  will be of interest to tiotti 
r:p;:!icd rii~~ttierriaticiaris as well as rngineers to  see how e5cctive arc‘ t ticse 



boundary conditions. Ilnrilitiriiri atid Uayliss[l0l implemented three dimen- 
sional vcrsion of (5.23) i.e., (5 .4 )  to a practical problem described below. 
[n three clinietisioris this t)oiiticlary condition is asymptotically accurate to 
o( 23) .  

r 3  1 tic prohletii is to solve for sound radiation into atmosphere from a 
cyliri(1ric;ii pip!. Ttiert: is ari iricitlerit wave on the  left end of the pipe and 
sourid ra(Iiiitw irito atmospliore f'rorn open end of the pipe (figure 9). 

Far field Boundary 

Dlrectlvily Measurement 
'I3 

'I1 

- z  

Figure 9 C o t n p r i t a t  iorial plane of sound radiation problem 

The iriciclcnt, pressure WAVO, i n  particular has the form 

P( r ,  4 P )  'v !( r ,  e )  e zmv (5 .24)  

where tn i s  callctl the niotle tiurriber. The governing wave equations have the 
form 

(5.23) 

(5 .26)  

( 5 . 2 7 )  

(5.28) 

,, I t i c w  equations are tlerivecl frorti Euler equations of t,he associated 
flow problcrn arid are availai)lc in rct'eretice; ''1. Uue to cylindrical symrnetry 
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(which oiie can recognize from t h e  equations) it is sufficient to solve the  
pro th t i  in  otic plane. 111 this pli inct  as in figure 5.2  the truncated boundaries 
are 7 1 , ~ a  a r i d  -y:! togettior with the axis of the pipe and the inflow boundary, 
where, i i  soiirc:e t w n i  is t o  t )e imposed. 

r 1  1 ticre are 1)oundary coridilions on  the inflow boundary, axis, arid on 
the walls of the pipe. I h t  we shall be concerried orily with the radiation 
condition on yI,72 arid 7:;.  For rcst of t'he details, the reader is referred to 
rcfcrcncc['"l again. Wtien ttic coridilion (5.23) is imposed for p ,  the acoustic 
prcssurt?, we have 

(5.29) 

Suppose a poitit on y,(i = 1 , 2 , 3 )  is at a distance R = d m  from the 
origin i i r i t l  t,tw line from t h e  origin to the point makes an angle a, with the 
axis. 'I'hcn 

Brit from ( 5 . X )  and (5.27) we see that 

i )  p Y 
- - -  - (ucos a, + osin a )  + 
(3 t R 

= 0 

(5.30) 

(5.30) 

This coriclit,iori. t o g c t h  with ot8tic\r boundary conditions. was used to 
solve ttic s y ~ ; ~ c w  (5.2;) tliroiigli (5.?8) by a fourth order finite differerice 
schernc to  obtaiti solutions rcportccl i n  figure 5.32. h i  this figure the vertical 
axis rricasurcs 1 tie soriiirl pressure levels (dB) arid the horizontal axis gives 
angles 0 where the calciilatioiis were niade at  a distance of 10 dianieters 
of the pipe. For this sitiiat>ion when the inflow has a time dependence of 
the fortri e - I r u t ,  CVc-incr- tlopf sol!itirrns can be computed. We cornpared oiir 
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procedure with the  work of Savkar anti Edelfelt[171 which uses the  Weiner- 
I lopf toc:hriiqiie. Also, we corripareti t he  solutions with some experimental  
d a t a  from Ville and Silcoxl"1. 'l'tic comparison i s  shown in figure 5.3 for a 
wave riririil)cr k = 3.37 arid for  axirriuthal angular dependence of the  solution 

Wciricr- I Iopf t ticory ;mi t tie numericaI solutions agree well. However, 
there is ii discrepancy with ttio esperirtiental results, especially near  t he  axis 
for srtiall values of 0. 'l'he reason is d u e  t o  certain uncontrollable factors, 
such as pimi(? wave illid lower order  rriotle of e" dependence, which arise i r i  

tlie t~x~)(~rii i i~!ril , i~l s i  triatiotis. 'I'he rnain point of erriphasis here is t h a t  t tie 
racliat*iori c:ori~litiori (5 .23)  is ii suitable condition for a practical problem. 
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